TF ChIP-seq Track Settings
 
TF ChIP-seq on NS5 cells

Maximum display mode:       Reset to defaults   
Select view (Help):
Peaks       Signal ▾      
Select subtracks by antibody and view:
 All
Antibody
Ascl1
CTCF
FoxO3
Max
NFI
Olig2
Smc1
Sox2
Sox9
Sox21
Tcf3
Antibody
All 
view










view
Peaks   Peaks
Signal   Signal
List subtracks: only selected/visible    all    ()
  view↓1 Antibody↓2   Track Name↓3  
 
dense
 Peaks  Ascl1  Ascl1 Peaks   Schema 
 
full
 Configure
 Signal  Ascl1  Ascl1 Signal   Schema 
 
dense
 Peaks  CTCF  CTCF Peaks   Schema 
 
full
 Configure
 Signal  CTCF  CTCF Signal   Schema 
 
dense
 Peaks  FoxO3  FoxO3 Peaks   Schema 
 
full
 Configure
 Signal  FoxO3  FoxO3 Signal   Schema 
 
dense
 Peaks  Max  Max Peaks   Schema 
 
full
 Configure
 Signal  Max  Max Signal   Schema 
 
dense
 Peaks  NFI  NFI Peaks   Schema 
 
full
 Configure
 Signal  NFI  NFI Signal   Schema 
 
dense
 Peaks  Olig2  Olig2 Peaks   Schema 
 
full
 Configure
 Signal  Olig2  Olig2 Signal   Schema 
 
dense
 Peaks  Smc1  Smc1 Peaks   Schema 
 
full
 Configure
 Signal  Smc1  Smc1 Signal   Schema 
 
dense
 Peaks  Sox2  Sox2 Peaks   Schema 
 
full
 Configure
 Signal  Sox2  Sox2 Signal   Schema 
 
dense
 Peaks  Sox21  Sox21 Peaks   Schema 
 
full
 Configure
 Signal  Sox21  Sox21 Signal   Schema 
 
dense
 Peaks  Sox9  Sox9 Peaks   Schema 
 
full
 Configure
 Signal  Sox9  Sox9 Signal   Schema 
 
dense
 Peaks  Tcf3  Tcf3 Peaks   Schema 
 
full
 Configure
 Signal  Tcf3  Tcf3 Signal   Schema 
    

Data

The raw data for the transcription factors Ascl1, Max, NFI, Olig2, Sox2, Sox9, Sox21 and Tcf3 is available under the ArrayExpress accession number E-MTAB-2270.
The data for CTCF and Smca1 was retrieved from the Gene Expression Omnibus (GEO) with accession number GSE36203. The data for FoxO3 is in the same repository with accession number GSE48336.
As the input chromatin sample for the analysis off all factors we used the sample from ArrayExpress accession number E-MTAB-1423, except for FoxO3 in which case we used the input sample provided in the corresponding accession (GSE48336).

Methods

The raw reads were mapped to the mouse genome (mm9 including random chromosomes) with Bowtie version 0.12.5.
We used MACS version 2.0.9 to define bound regions for factors ChIP-seq data. As this tool is very sensitive to the unbalanced number of reads in the real and the input set, we decided to reduce the larger dataset to match the number of mapped reads in the smaller dataset by randomly sampling reads. Instead of using the tool included in the MACS software for this task, we designed a custom python script (balanceBAMFiles.py) that perform the sampling for pairs of treatment and input samples and determines the appropriate number of reads automatically.
For this process we only considered a maximum of two fully overlapping reads, discarding the rest. To correct for sampling bias we generated 10 different random samples on which we ran MACS specifying the shift size to 90, q value to 1e-2 and leaving the rest of parameters as default.
We subsequently collapsed the 10 different peak calling results for each set using another custom script (aggregatePeaksFromSubsampling.py) which reports only overlapping peaks in at least 9 of the 10 lists.
The resulting peak bed files were first filtered to discard peaks with q-value lower than 1e-5 and then converted into bigBed files using the tool bedToBigBed and the q-values bedGraph files were converted into bigWig file with the bedGraphToBigWig tool from the UCSC Genome Browser.

Credits

Data were generated and processed for the CISSTEM project. For inquiries, please contact Juan L. Mateo at the following address: mateojuan (at) uniovi.es

References

Mateo, J. L., van den Berg, D. L. C., Haeussler, M., Drechsel, D., Gaber, Z. B., Castro, D. S., ... Martynoga, B. (2015). Characterization of the neural stem cell gene regulatory network identifies OLIG2 as a multifunctional regulator of self-renewal. Genome Research, 25(1), 41-56. DOI: 10.1101/gr.173435.114